CS257 Introduction to Nanocomputing

Reliable Computation with Unreliable Elements

John E Savage

Lecture Outline

- The unreliable circuit model
- Reliable gates and redundant circuits
- Control of failure rates
- Redundant circuits of size O(N log (N/ δ)) simulate circuit of size N achieve error rate δ
- This lecture based Peter Gacs' notes.

Lect 07 Reliable Computation

CS257 © John E Savage

The Goal, Problem and Challenge

- The goal: To build reliable circuits with unreliable gates.
 - Limit attention to 1-output circuits
- The problem: output gates can fail
- The challenge: to avoid the accumulation of errors at the circuit output.

Goal Restatement

- Prevent circuit failure rate from being more than constant multiple of the gate failure rate.
- If gates fail with probability ϵ , design circuits so that output failure rate is less than δ , δ close to ϵ .
 - Such circuits are (ε, δ)-resilient.

Circuit Fault Model

- Faults change the value (output) of gates
- V is the set of gates and Y_v = val_x(v) is the (noisy) value at vertex v on input vector x.
- The values $\{Y_v \mid v \text{ in } V\}$ constitute a random process.
- Let Z_v = 1 (0) if gate v does (does not) fail. (Its output is (is not) different from value computed by the gate on its inputs.)

ε-Admissable Configurations

• Let $Z_v = 1$ (0) if gate v in a circuit does (doesn't) fail

Definition for $\varepsilon > 0$, configuration $\{Y_v \mid v \text{ in } V\}$ is ε -admissable if (a) external inputs don't fail and (b) for every set *S* of non-input nodes,

$$P[Z_v = 1 \text{ for all } v \in S] \leq \epsilon^{|S|}$$

 In other words, having faults occur at k different locations is at most ε^k. Gates can't conspire to realize a randomized algorithm!

Circuit Redundancy

- Given circuit C, the goal is to build a circuit C* that isn't too much larger than C but is (ε, δ)resilient when circuit configurations are ε-admissable.
- New goal: Find a function $F(N, \delta)$ and $\varepsilon_0 > 0$ such that for $\varepsilon < \varepsilon_0$ and $\delta \ge 2\varepsilon$ for each circuit *C* of size *N* there is a circuit *C** that is (ε, δ) -resilient of size at most $F(N,\delta)$. Redundancy is $F(N,\delta)/N$.

Building a Reliable Gate

- Make three copies of gate and take majority.
- Error analysis: ε (δ) = probability of majority (gate copy) failure. New gate fails if majority gate fails (ε) or two or more copies of gate fail (3δ²). If ε + 3δ² ≤ δ, error rate doesn't increase
- Holds if $\delta \ge 2\varepsilon$ and $\varepsilon < 1/12$.

First (Unrealistic) Approach

Theorem Over complete basis of fan-in 3, every Boolean function of depth *t* can be realized by an (ε, δ) -resilient circuit with $O(3^t)$ gates if $2\varepsilon \le \delta \le .08$.

Proof Inductive hypothesis: given circuit of depth $t \le T$, can assemble (ε, δ) -resilient circuit of depth 2t. Let output $f = g(f_1(\mathbf{x}), f_2(\mathbf{x}), f_3(\mathbf{x}))$ have depth T+1. Build (ε, δ) -resilient circuits for each input to g. Take g on their outputs. It's failure rate $\le 3\delta + \varepsilon \le 4\delta$.

Apply previous slide to 3 copies of these circuits. Prob. of error $\leq 3(4\delta)^2 + \epsilon \leq \delta$ if $2\epsilon \leq \delta \leq .01$. Number of gates = O(3^t) for depth *t*!

A More Realistic Approach

• **Old Goal:** Build a circuit that has the same number of outputs as the unreliable circuit but prevents error accumulation.

• New Goal: (simple) coded computation

- Replicate each output k times.
- Add circuitry so that with very high probability more than half of the copies of each output produce the correct value.
- Reliable computation occurs with high probability if there exist reliable *k*-input majority gates.
- Reliability increases with *k*.

Schema for a More Realistic Approach

- For each wire, build cable that has k copies of wire.
 - A wire is tainted if an error assigned to it.
- For each original gate, create an executive organ, that has k copies of the gate.
 - A new **gate is tainted** if it fails or ≥ one input is tainted
- For each original gate, create a **restoring organ**.
 - It is designed to decrease the taint of a cable.
 - Built from **compressors**

Tainted Cables

- Cables carry signals from an executive organ
- Inputs to executive organ (EO) are from two cables
- If first (second) cable has $e_1 (e_2)$ errors, output cable can have $e_1 + e_2$ errors.
- Restoring organ reduces number of errors.

Compressors

- Compressor must work in noise.
- Build them from bipartite multigraphs
 - Bipartite graphs have two sets of vertices with edges directed from sources to sinks.
 - A multigraph may have multiple edges between pairs of vertices
- Show existence of good compressors using the probabilistic method:
 - Construct graphs at random. If probability > 0 of a "good compressor," then one exists.

Using Compressors as Restoring Organs

 Each output vertex of a compressor computes the majority function on its inputs.

Definition A bipartite multigraph is *d*-halfregular if each output has degree *d*. Such a graph is a (d, α, γ, k) -compressor if for every set E of at most αk inputs, the number of outputs connected to at least d/2 inputs of E is at most $\gamma \alpha k$.

Compressors

- View E as errors, $|E| \le \alpha k$. Majority gates at outputs introduce at most $\gamma \alpha k$ output errors. Thus, the number of errors at output of EO, αk , is reduced to $\gamma \alpha k$, that is by a factor of γ .
- (5,0.1,0.5,k)-compressors have output degree
 5. Majority operation on outputs decreases
 10% input error rate to 5% output error rate.

Existence of Compressors

Theorem For all $\gamma < 1$ and integer *d* satisfying $1 < \gamma (d-1)/2$,

there is an α such that for all k > 0, there exists a (d, α, γ, k) -compressor. (**Note**: Condition fails if $d \le 3$.)

- **Proof** Consider bipartite graphs with *k* sources and *k* sinks. Let $s = \lfloor d/2 \rfloor$. Construct *d*-half-regular graph: for each output *v* select *d* source vertices at random. Let *A*, $|A| \le \alpha k$, be sources. Let E_v be event that output *v* has $\ge s+1$ edges from *A*. Let $p = P(E_v)$. Let
 - F_A be event that E_v occurs for > $\gamma \alpha k v$'s.

Existence of Compressors

Proof (cont.) Let M = # sets A with $\leq \alpha k$ sources Let $q = P(no (d, \alpha, \gamma, k)$ -compressor exists). Then $q = P(\exists \geq \text{source set } A, |A| \leq \alpha k, \exists F_A \text{ occurs})$ Clearly, $q \leq MP(F_A)$. If this is ≤ 1 , a (d, α, γ, k) compressor exists.

Let $\operatorname{bin}(n, p, m) = \sum_{i=m}^{n} {n \choose i} p^{i} (1-p)^{n-i}$ Then $p = P(E_v) = \operatorname{bin}(k, \alpha, s+1), P(F_A) = \operatorname{bin}(k, p, \gamma \alpha k).$ $M = \sum_{i \leq \alpha k} {k \choose i} = 2^{-k} \operatorname{bin}(k, .5, (1-\alpha)k)$

Lect 07 Reliable Computation

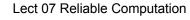
CS257 © John E Savage

Existence of Compressors

• Compressors exist with following parameters:

•
$$\gamma = .4, d = 7, \alpha = 10^{-7}$$

•
$$\gamma = .4, d = 41, \alpha = .15$$



Tainted Outputs at (*d*,α,γ,*k*)-Compressor

- Errors at EO output due to tainted inputs.
 - Let $\leq \alpha k$ be number of tainted inputs.
 - Then ≤ γαk of majority outputs tainted by tainted inputs.
- If ≤ ρk majority gate errors also occur,
 ≤ (γα+ρ)k compressor outputs are tainted
 - $\mu = P(\geq \rho k \text{ maj. gate failures}) = bin(k, \varepsilon, k\rho)$

Controlling Tainted Outputs

- A *k*-wire cable is θ *k*-safe if $\leq \theta$ *k* wires are tainted.
- If EO input cables are θk-safe, then ≤ 2θk EO outputs are tainted by cables. If ≤ ρθk of EO gates fail, ≤ (2+ρ)θk EO outputs tainted.
- Let $\alpha = (2+\rho)\theta$. Then at most $\gamma \alpha k$ of majority gates in (d, α, γ, k) -compressor are tainted by inputs. If $\leq \rho \theta k$ of compressor gates fail, $\leq \gamma (2+\rho)\theta k + \rho \theta k$ outputs are tainted. If $\gamma (2+\rho) + \rho \leq 1$, compressor output cable is also θk -safe.

Probability of Safe Gate Computation

- Let $\alpha = (2+\rho)\theta$ and $\gamma(2+\rho) + \rho \le 1$.
- If EO input *k*-wire cables are θk -safe and (d, α, γ, k) compressor is used, compressor output cable is θk safe if $\leq \rho \theta k$ compressor gates & $\leq \rho \theta k$ EO gates fail
- Probability that a compressor output cable not θksafe when all inputs correct ≤ 2bin(k,ε,kρθ)
- Probability that output cable of one or more of the *N* compute organs is not θk -safe is $\leq 2N \operatorname{bin}(k,\varepsilon,k\rho\theta)$.

Lect 07 Reliable Computation

CS257 © John E Savage

Size of Redundant Circuit

- Given a circuit with N gates, a replicated circuit N' can be constructed containing k gate copies (in EOs) plus k majority gates on αk inputs for each gate of N.
- A majority gate is applied to the (each) output cable on k inputs to produce the circuit output(s).
- Majority gates on αk inputs used throughout
 N' and on its output cable(s) of k inputs.

Size of Redundant Circuit

- Let c_M(m) = number of two-input gates to realize a majority gate on m inputs.
- We construct a *near-majority* gate on 2^p inputs that outputs 1 if ³/₄ of inputs are 1 and 0 otherwise.
 - A majority gate can be constructed by replacing some of the inputs by 0s.

Putting it Altogether

Inputs are reliable, wires and gates replicated and restored.

Need probability 2*N* bin($k, \varepsilon, k\rho\theta$) that some cable not θk -safe be small.

 Need output circuit that produces one output reliably from θk-safe output cable without increasing circuit size or error rate by much.

Lect 07 Reliable Computation

CS257 © John E Savage

Output Circuit on 2^k Inputs

- Circuit output has value 1 if ≥ ¾ of k cable values are 1.
- Realize with circuit of depth 2k.
- Build fast parallel adder using fan-in 3 gates.
 - Let a, b, c, d, and e be binary nos. Form binary numbers d and e so that d+e = a+b+c using two 3-input gates, as follows:

 $d_{i+1} = \lfloor (a_i + b_i + c_i)/2 \rfloor$, $e_i = (a_i + b_i + c_i) \mod 2$

• *d* and *e* need 1 more bit than *a*, *b*, *c*.

Output Circuit

- Start with k 1-bit numbers. Map 3 binary nos.
 to 2 binary nos.
- Combine with 4th no. to represent sum of 4 inputs by 2 binary numbers.
- Depth 2 circuit reduces # inputs by factor of 2. Length of both results is larger than originals by 1 bit

Output Circuit

- Repeat k-1 times to produce 2 output nos. of length ≤ k by circuit of depth 2(k-1).
- Two most significant bits of 2 outputs decide output value. Increases depth by 2. Depth = 2k.
- Size of circuit (see Theorem) = $O(3^t) = O(k^7)$ (t = 4log₂ k) which fails with prob. δ if $2\epsilon \le \delta \le$.01

Last Few Pieces

- Circuit with *N* gates expanded to circuit with $2kN + O(k^7)$ gates. Output circuit fails with probability $\leq \delta$ if $2\epsilon \leq \delta \leq .01$.
- Make k large so that $2Nbin(k,\varepsilon,k\rho\theta) \le \delta/3$. (Holds for $k = O(\log 6N/\delta)/(\rho\theta \log(\rho\theta/\rho\varepsilon_0))$.)
- Set output counting circuit failure rate to 2ε. Thus, failure of output cable or counting circuit is δ/3 + 2ε ≤ δ if δ ≥ 3ε.

Lect 07 Reliable Computation

Summary

- Given unreliable but ε-admissable circuits, there exist an ε₀ such that if ε ≤ ε₀ every failure-free circuit containing N gates can be implemented by (ε, δ)-resilient circuit containing O(N log N/δ) gates.
- Unfortunately, the constants in this result are absolutely enormous.
- Although the principle is established, the practice is not.

Lect 07 Reliable Computation

CS257 © John E Savage